Excretion

- I. Excretory Substances
 - A. End Products of Metabolism
 - 1. Ammonia is the result of deamination (removal of the amino groups) from amino acids.
 - 2. Urea produced in liver when ammonia is altered;
 - Uric acid produced when nucleotides are broken down;
 - 4. Creatinine result of muscles using the high phosphate stored in creatine;
 - 5. Bile pigments results from the breakdown of hemoglobin into bilirubin and biliverdin;
 - 6. CO₂ excreted by the lungs (kidneys excrete bicarbonate).
 - B. Ions are excreted to keep the proper concentration in blood of the pH, osmotic pressure and electrolyte balance.
 - Examples include: Na, K, Magnesium, Ca, Fe, Cl, P.
- II. Organs of Excretion
 - A. Skin
 - 1. Sweat glands secrete perspiration; contains H_2O , salt and urea;
 - 2. Main purpose of sweating is to cool off; heat is lost during perspiration.
 - B. Liver
 - 1. Excretes bile pigments into bile;

- 2. Bile passes into the intestine;
- 3. Bile comes from the breakdown of hemoglobin.
- C. Lungs
 - 1. Expiration Removes CO₂, H₂O vapor.
- D. Intestine
 - 1. Fe and Ca are excreted by cells of the intestine (passes out in wastes);
 - Defecation refers to rejects of the body, substances that have never been a part of the body.
- E. Kidneys main organ of excretion
 - 1. Excrete urine (a combination of the end products of metabolism).
- III. Urinary System
 - A. Parts
 - 1. Kidneys removes wastes from blood;
 - 2. Ureters muscular tubes which convey the urine to bladder;
 - 3. Urinary bladder urine is stored here;
 - 4. Urethra leads from bladder to outside.
 - B. Urination
 - Bladder fills → stretch receptors send nerve impulses → spinal cord
 - Bladder contracts → sphincters relax → urination occurs.
 - C. Kidneys

Macroscopic Parts	Microscopic Parts of Nephron	
A. Outer cortex	Bowman's capsule	
	Convoluted tubules	
B. Medulla	Loop of henle	
	Collecting duct	
C. Pelvis		

- 1. Microscopic parts of nephron (nephron the functional unit of the kidney).
 - a. Bowman's capsule blind end of tubule, cuplike;
 - Proximal (near) convoluted tubule near Bowman's capsule;
 - c. Loop of henle "U" portion of nephron;
 - d. Distal convoluted tubule far from the capsule;
 - e. Collecting duct collects urine.

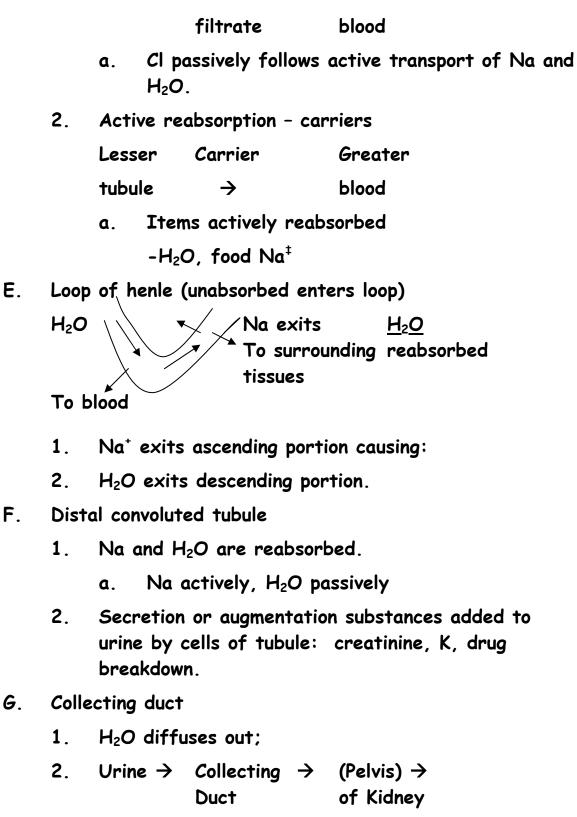
Urine Formation

- A. Overview
 - 1. Filtration
 - a. Water nutrients and wastes move from glomerulus to inside of Bowman's capsule;
 - b. Large molecules remain in blood;
 - c. Small molecules glucose, urea, enter tubule.
 - 2. Selective reabsorption

- a. Nutrients and salt are reabsorbed from proximal convoluted tubule into blood;
- b. H₂O reabsorbed all along but more at loop of henle.
- 3. Secretion wastes are actively secreted into the distal convoluted tubule.

Result - small H₂O loss, wastes are removed, kidneys promote homeostasis.

B. Blood Supply


Aorta → Afferent → Arteriole	Renal Artery Glomerulus (capillary tuff)	→ Small Arteries → Efferent Arteriole	→
Peritubular	→ Venule ·	→ Vein →	

capillary network

Renal Vein \rightarrow IVC

The peritubular capillary network surrounds convolutions, collecting duct and loop. It provides nourishment.

- C. Bowman's Capsule
 - 1. Whole blood enters in afferent arteriole going to Bowman's capsule (filtration occurs).
 - a. Glomerular filtrate filterable substances H₂O, nitrogen wastes, food, salt, ions;
 - b. Formed elements and large proteins remain in blood vessel and leave by efferent arteriole.
- D. Proximal convoluted tubule (close) passive and active reabsorption occurs along tubule.
 - 1. Passive Greater \rightarrow Lesser

Ureters \rightarrow Bladder \rightarrow Urethra

Regulatory Functions of Kidney

- A. Blood Volume
 - 1. Blood volume controlled by amounts of H_2O in blood;
 - 2. ADH (antidiuretic);
 - a. Secreted by posterior lobe of pituitary gland;
 - b. Controls amount of reabsorption of H_2O .

More ADH	Less urine	Increased H ₂ O reabsorption
Less ADH	More urine	Less reabsorption of H2O

ALC. suppresses H_2O reabsorption

- B. pH
 - 1. H⁺ and ammonia ions are excreted and Na and bicarbonate are reabsorbed to maintain pH.
 - 2. If too acidic, H⁺ exits; if basic, fewer are excreted
 - 3. If too alkaline, fewer H⁺ excreted and fewer Na⁺, CO₃[−] reabsorbed.

ILLNESSES

Urinalysis – Examination of Urine

- A. Diabetes
 - 1. Sign: Glucose in urine;
 - 2. Liver does not <u>store glucose</u> as glycogen, thus filtrate high in glucose.
- B. Diabetes Mellitas
 - 1. Cells of pancreas do not secrete insulin that promotes storage of glycogen.

- C. Renal disease
 - 1. Sign: WBC, RBC in urine urinary tract;
 - 2. Under attack by bacteria bladder.
- D. Uremia urea in blood
 - 1. Kidney failure;
 - 2. Swelling